

META-ANALYSIS ON THE EFFICACY OF STEM CELL THERAPY IN IMPROVING CARDIAC FUNCTION AFTER MYOCARDIAL INFARCTION: A REVIEW OF CLINICAL TRIALS ASSESSING THE IMPACT OF STEM CELLS ON MYOCARDIAL REHABILITATION

Amro Istanboli

MD, Internal Medicine Resident

Abstract

Objectives: This study would involve systematically reviewing and analyzing data from clinical trials to evaluate the effectiveness of stem cell therapy in regenerating heart muscle and improving cardiac function after a heart attack. The analysis would focus on outcomes such as left ventricular ejection fraction (LVEF), myocardial viability, and overall survival rates.

Data Sources: Medline databases (PubMed, Medscape, Science Dir ect. EMF-Portal, google scholar).

Study Selection: The search results of the articles were screened by title and abstract then by full-text. The eligible full-text articles were downloaded to be utilized in further analytics procedures. Inclusion criteria were articles on the efficacy of stem cell therapy in improving cardiac function after myocardial infarction.

Data Extraction: If the studies did not fulfill the inclusion criteria, they were excluded. Study quality assessment included whether ethical approval was gained, eligibility criteria specified, adequate information, and defined assessment measures.

Data Synthesis: Comparisons were made by structured review with the results tabulated.

Findings: 24 potentially relevant publications were included, and indicate that stem cell therapy reveals modest improvements in LVEF and significant reductions in left ventricular end-systolic and end-diastolic volumes with reducing mortality risk (OR 0.33) and reinfarction risk (OR 0.19)/ For heart failure-related rehospitalization, the odds ratio is 1.12, showing no clear effect. Potential reductions in target vessel revascularization (OR 0.62) and arrhythmia risk (OR 1.30) were also noted.

Conclusion: stem cell therapy may offer modest improvements in LVEF and significant reductions in left ventricular end-systolic and end-diastolic volumes. Additionally, there is a potential reduction in mortality and rehospitalization with reduced adverse effects following AMI. **Keywords:** Cardiac function, LVEF, Myocardial Infarction, Overall survival, Stem cell.

Background:

Acute myocardial infarction (AMI) remains to be an important contributing factor in global morbidity and mortality ⁽¹⁾. The presence of any obstruction in the coronary arteries gives rise to acute myocardial ischemia. Rupture of plaques, fissuring, or formation of any superimposed thrombus may be responsible for this obstruction formation ⁽²⁾.

Although there have been major advancements in the management of acute Myocardial Infarction including fibrinolysis and rapid revascularization, the prognosis remains poor due to the

lack of self-repairing of the already damaged myocardium, which may result in complications like heart failure ⁽³⁾.

AMI remains the predominant cause of heart failure (HF), significantly affecting patient's quality of life and medical costs. HF patients have a five-year prognosis of 50% and a one-year mortality rate of approximately 13%, despite significant progress in the treatment of AMI ⁽⁴⁾.

Therefore, promoting the preservation of cardiac function in patients with AMI is essential, emphasizing its impact on patient survival and the economic burden linked to HF progression ⁽⁵⁾.

The current conventional treatments are effective in controlling disease, but they are temporary. This emphasizes the need for innovative methods that are specifically designed to prevent and reverse heart dysfunction. The delivery of exogenous cells is the most widely acknowledged strategy for heart repair among these ⁽⁶⁾.

Stem cells are unspecialized immature cells that can divide and replicate themselves throughout the entire life of an organism ⁽⁷⁾. There are 2% to 7% improvements in ejection fractions (EF) with the administration of adult bone marrow cells (BMC) ⁽⁸⁾. The exact mechanisms of improvement of damaged heart function by cell therapy are unclear, but it is assumed that the paracrine effect plays a central role ⁽⁹⁾. Transplanted mesenchymal stem cells (MSCs) can engraft and differentiate into cardiomyocyte-like and endothelial cells and recruit endogenous cardiac stem cells ⁽¹⁰⁾.

Stem cell therapy has considerable regenerative potential in addressing the short-term effects of cardiac injury following an acute myocardial infarction ⁽¹¹⁾. There is ongoing research on this treatment method. While short-term effects on cardiac function have been reported (6 months) ⁽²⁾, long-term evaluations ranging from 18 months to 3 years have produced insufficient evidence on whether cell transplantation improves cardiac function due to the small number of patients recruited in individual studies ⁽¹²⁾.

Administering stem cell therapy before complete myocardial damage may be an effective alternative to current treatment methods ⁽¹³⁾. However, injecting stem cells too early can increase the procedural risks. Therefore, questions have been raised regarding the optimal time required from primary percutaneous coronary intervention (PCI) to cell infusion to ensure safe and effective treatment ⁽²⁾.

Standard measures for evaluating the efficacy of stem cell infusion have traditionally included left ventricular ejection fraction (LVEF), end-diastolic volume of the left ventricle, and infarct size (14).

Therefore, this meta-analysis was performed to systematically review and analyze data from clinical trials to evaluate the effectiveness of stem cell therapy in regenerating heart muscle and improving cardiac function after a heart attack. The analysis would focus on outcomes such as LVEF, myocardial viability, and overall survival rates

Methods

Search Strategy

We followed the Preferred Reporting Items for Systematic Reviews guidelines when conducting our study as we searched for the effectiveness of stem cell therapy in regenerating heart muscle and improving cardiac function after heart attack from Medline databases which are (PubMed, Medscape, Google Scholar, and Science Direct) and the available materials in the Internet. A combination of MeSH terms as well as free-text keywords, including "Cardiac function", "myocardial viability", "Stem cell", "left ventricular ejection fraction", "Acute Myocardial Infarction" were used in our research. Additional records were identified by reference lists in retrieved articles. Boolean operators (AND, OR) were used to narrow down the search, and filters were applied to limit results to articles published in English. The search was established in the electronic databases for eligible articles to be included in our study according to the required inclusion and exclusion criteria.

Eligibility criteria and screening Inclusion Criteria

The search results of the articles were screened by title and abstract then by full-text. The eligible full-text articles were downloaded to be utilized in further analytics procedures. Inclusion criteria were articles on the efficacy of stem cell therapy in improving cardiac function after myocardial infarction. We included all types of observational studies (cohort, case-control, and cross-sectional) in addition to randomized controlled trials (RCTs).

Exclusion Criteria

We excluded peer-reviewed articles, information reviews, editorials, and opinion pieces. Also, studies investigating other techniques, case reports, and non-English language studies were excluded which allow us to maintain consistency and control in the review process.

Data Extraction and Quality Assessment

Using Microsoft Excel sheets, data were extracted including Data on publication characteristics (Author, year of publication, country), study populations (number of cases, age, and sex), intervention details (Stem cell arm injection), Myocardial function measurement.

Quality assessment

The analyzed publications were evaluated according to evidence-based medicine (EBM) criteria using the classification of the U.S. Preventive Services Task Force & UK National Health Service protocol for EBM in addition to the Evidence Pyramid.

U.S. Preventive Services Task Force:

- Level I: Evidence obtained from at least one properly designed randomized controlled trial.
- Level II-1: Evidence obtained from well-designed controlled trials without randomization.

- Level II-2: Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.
- Level II-3: Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled trials might also be regarded as this type of evidence.
- Level III: Opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees.
- Quality assessment: quality of all the studies was assessed. Important factors included, study
 design, ethical approval, calculation of evidence power, specified eligibility criteria, appropriate
 controls, adequate information and specified assessment measures. It was expected that
 confounding factors would be reported and controlled for and appropriate data analysis made
 in addition to an explanation of missing data.
- Data Synthesis: A structured systematic review was done with the results tabulated.

Statistical Analysis

Statistical analysis was performed with Open Meta [analyst] package for the meta-analysis. A grouped random effects model was used to calculate the pooled mean outcome and create forest plots to display the individual study means of the two modalities to account for varying true effect sizes of the studies. A random-effects model was chosen to allow for the generalization of conclusions beyond the studies included in the analysis ⁽¹⁵⁾. I ² was used to assess heterogeneity.

Results

Search strategy and screening:

The initial search yielded 31 results; out of which 7 were excluded, resulting in 24 studies included in the final quantitative synthesis. The results of this meta-analysis focus on evaluating the efficacy of stem cell therapy in improving cardiac function across various clinical trials. Key outcomes assessed include left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and left ventricular end-diastolic volume (LVEDV), as well as the incidence of significant clinical events such as rehospitalization, reinfarction, target vessel revascularization (TVR), arrhythmias, and mortality during follow-up. Across the included studies, the effect of stem cell therapy on myocardial recovery and cardiovascular outcomes was compared to standard control treatments. The studies varied in sample size, patient characteristics, and outcome measures, providing a comprehensive evaluation of the potential benefits and limitations of stem cell interventions.

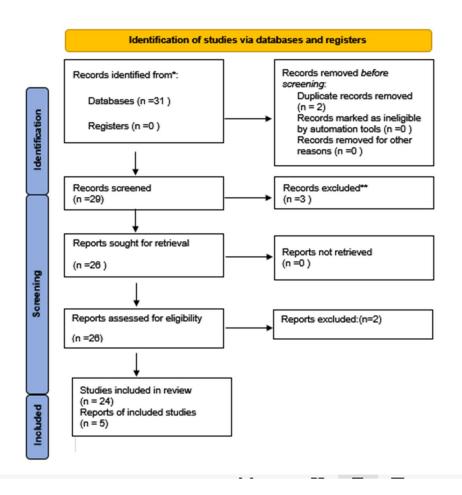


Figure 1.Flow diagram of the literature search and study selection processes.

Table 1. Data extraction table for the reviewed studies.

Author	Y e a r	Country	Ca ses (N)	Mean age (Cases	M ale %	Con trol (N)	Mean age (Contr ol)	M ale %	Stem cell arm injectio n	Myocardial function measuremen t
Cao et al. (16)	2 0 0 9	Peoples Republic of China	41	50.7	95. 1 %	45	51	93. 3 %	BM- MNCs	SPECT and echo
Dill et al (17)	2 0	Germany	27	57.9	88. 9 %	27	54.6	92. 6 %	BM- MNCs	Echo and MRI

0 9										
2 0 1 3	Peoples Republic of China	21	55	10 0.0 %	22	58.6	86. 4 %	BMSCs	SPECT, echo, MRI	and
2 0 1 0	Poland	31	49.9	87. 1 %	14	50.9	85. 7 %	BM- MNCs	SPECT, echo, MRI	and
2 0 0 6	Peoples Republic of China	11	58.4	81. 8 %	10	61.6	80. 0 %	BM- MNCs	Echo	
2 0 0 9	Belgium	33	55	81. 8 %	34	58	82. 4 %	BM- MNCs	Echo MRI	and
2 0 1 1	Amsterda m	69	56	84. 1 %	65	55	86. 2 %	BM- MNCs	Echo MRI	and
2 0 1 5	Peoples Republic of China	11	61.2	81. 8 %	14	60.6	64. 3 %	BM- MNCs	SPECT, echo, MRI	and
2 0 0 8	Finland	40	60	90. 0 %	40	59	85. 0 %	BM- MNCs	Echo	
2 0 0 6	Czech	33	55.8	81. 8 %	34	57.9	82. 4 %	BMSCs	Echo MRI	and
2 0 0	Norway	50	58.1	84. 0 %	50	56.7	84. 0 %	BM- MNCs	SPECT, echo, MRI	and
	9 2 0 1 3 2 0 0 6 2 0 0 0 6 2 0 0 1 1 2 0 0 1 5 2 0 0 8 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peoples Republic of China Poland Peoples Republic of China Republic of China Republic of China Republic of China Peoples Republic of China Peoples Republic of China Cancel China	9 2 0 Peoples 1 Republic 21 2 0 Poland 31 2 0 Peoples Republic 11 0 Belgium 33 9 2 0 Amsterda 69 1 2 0 Republic 11 2 0 Republic 11 5 Peoples Republic 11 5 Of China 40 8 2 0 0 Czech 33 6 2 0 0 Norway 50	9 2 Peoples 0 Republic 1 of China 2 Poland 1 31 2 Peoples 0 Republic 0 Finland 0 Finland <	9 2 Peoples Republic of China 10 1 Republic of China 21 55 0.0 2 Poland 31 49.9 1 % 2 Peoples Republic of China 11 58.4 8 81. 8 Republic of China 11 58.4 8 % 2 Amsterda m 69 56 1 % 2 Peoples Republic of China 11 61.2 8 84. 2 Peoples Republic of China 11 61.2 8 90. 2 Peoples Republic of China 11 61.2 8 8 8 2 Peoples Republic of China 11 61.2 8 8 8 8 2 Peoples Republic of China 13 55.8 8 8 8 8 3 55.8 8 % 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 <	2 Peoples 10 0 Republic of China 21 55 0.0 22 0 Poland 31 49.9 1 14 0 Peoples 87. 1 14 0 Peoples 81. 8 10 0 Republic of China 11 58.4 8 10 2 Negublic of China 84.	9 10 Peoples 10 20 58.6 1 cof China 21 55 0.0 22 58.6 2 cof China 87. 87. 87. 87. 2 cof China 81. 14 50.9 50.9 2 cof China 81. 81. 81. 81. 81. 2 cof China 83. 84. 83. 84. 83. 84.	9 10 Republic of China 21 55 0.0 22 58.6 4 40 60 40 60	9 Peoples Republic of China 21 55 10 86. 4 BMSCs 1 of China of China 31 49.9 1 14 50.9 7 BM-MNCs 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 Peoples Republic 1 Sepublic 21 21 55 10 Sepublic 22 58.6 4 Sepublic 3 Sepect, MRI SPECT, Secho, MRI 20 Poland 3 Poland 0 Sepublic 1 Sepublic 0 Sepubli

Maki et al ⁽²⁶⁾	2 0 1 2	Finland	11	56	10 0.0 %	8	55	10 0.0 %	HSCs	SPECT, echo, a MRI	ınd
Meluzi' n et al	2 0 0 8	Czech	20	54	90. 0 %	20	55	90. 0 %	BM- MNCs	SPECT ech	ho,
Meyer et al ⁽²⁸⁾	2 0 0 9	Germany	30	53.4	66. 7 %	30	59.2	73. 3 %	BM- MNCs	MRI	
Penick a et al	2 0 0 7	Czech	14	59	10 0.0 %	10	59	10 0.0 %	BM- MNCs	SPECT a	ınd
Plewka et al ⁽³⁰⁾	2 0 0 9	Poland	38	56	68. 4 %	18	56	77. 8 %	BMSCs	Echo	
Roncal li et al	2 0 1 1	France	52	56	80. 8 %	49	55	89. 8 %	BM- MNCs	SPECT, echo, a MRI	ınd
San Roman et al (32)	2 0 1 5	Spain	30	54	96. 7 %	31	57	90. 3 %	BM- MNCs	SPECT, echo, a MRI	ınd
Schach inger et al (33)	2 0 0 6	Germany	101	55	82. 2 %	103	57	81. 6 %	BM- MNCs	Echo a MRI	and
Silva et al (34)	2 0 0 9	Brazil	14	59.7	50. 0 %	6	57.2	66. 7 %	BM- MNCs	SPECT, echo, a MRI	ınd
Tender a et al	2 0 0 9	USA	80	55	70. 0 %	40	59	75. 0 %	BM- MNCs	Echo a MRI	and

GLAND SURGERY

Traver se et al	2 0 1 0	USA	30	52.5	83. 3 %	10	57.5	60. 0 %	BM- MNCs	Echo MRI	and
Yao et al. (37)	2 0 0 9	Peoples Republic of China	12	52.1	83. 3 %	12	52.7	91. 7 %	BM- MNCs	SPECT, echo, MRI	and

Table 1 presents an overview of the key characteristics of the reviewed studies, including sample size, demographics, and methods for assessing myocardial function. The studies span a wide geographical range, with contributions from countries such as China, Germany, Poland, and the USA. The number of cases varies across studies, with sample sizes ranging from 11 to 101. The mean age of participants is generally in the mid-50s, with most studies reporting a high percentage of male participants, often exceeding 80%. The stem cell injections across studies predominantly involve bone marrow mononuclear cells (BM-MNCs), with some studies using bone marrow stem cells (BMSCs) and hematopoietic stem cells (HSCs). Myocardial function was primarily assessed using SPECT, echocardiography, and MRI, with many studies utilizing more than one method to evaluate outcomes. The inclusion of diverse measurement techniques and patient demographics enhances the breadth of the data extracted, allowing for a comprehensive analysis of the effectiveness of stem cell therapies in improving myocardial function.

Cardiac function

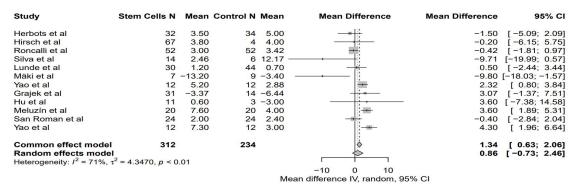


Figure 2. Forest Plot of Mean Difference in Left Ventricular Ejection Fraction (LVEF) Between Stem Cell Therapy and Control Groups Assessed by Single-Photon Emission Computed Tomography (SPECT)

The forest plot in **Figure 2** illustrates the mean differences in left ventricular ejection fraction (LVEF) between stem cell therapy and control groups, assessed by SPECT, across twelve clinical trials. Each study presents its respective mean difference with 95% confidence intervals (CI), showcasing the variation in LVEF outcomes between the two groups.

Study-Specific Results:

Certain studies, such as Yao et al. ⁽³⁷⁾ and Meluzín et al., ⁽²⁷⁾ demonstrate positive effects of stem cell therapy, with mean differences of 3.07 and 3.60, respectively, indicating that stem cell therapy may improve LVEF. However, studies like Silva et al. ⁽³⁴⁾ and Mäki et al. ⁽²⁶⁾ show negative mean differences of -9.71 and -9.80, suggesting that in these populations, stem cell therapy may not have been beneficial. Notably, several studies have confidence intervals that cross zero, indicating non-significant findings.

Overall Effect:

The random effects model shows a pooled mean difference of **0.86** (95% CI: -0.73 to 2.46), indicating a small and non-significant improvement in LVEF with stem cell therapy. The common effect model reports a more significant mean difference of **1.34** (95% CI: 0.63 to 2.06), where the confidence interval does not cross zero, suggesting a statistically significant improvement in LVEF.

Heterogeneity

There is substantial heterogeneity among the studies, with an I² value of 71%, reflecting significant variability between the studies. This heterogeneity may stem from differences in patient characteristics, stem cell types, or protocols used in each study, contributing to the observed variation in results.

Conclusion

Overall, the forest plot in Figure 2 suggests that stem cell therapy may offer a modest improvement in LVEF when assessed by SPECT.

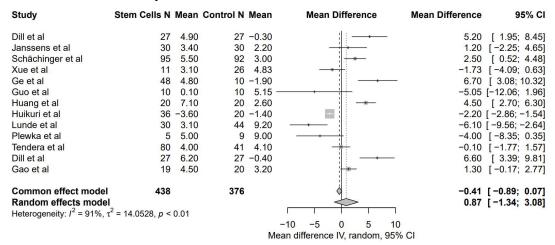


Figure 3. Forest Plot of Mean Difference in Left Ventricular Ejection Fraction (LVEF) Between Stem Cell Therapy and Control Groups Assessed by Echocardiography.

The forest plot in **Figure 3** shows the mean differences in left ventricular ejection fraction (LVEF) assessed by echocardiography between stem cell therapy and control groups across twelve studies. Each study provides its respective mean difference and 95% confidence intervals (CI), illustrating the variation in LVEF outcomes between the two groups.

Study-Specific Results

Several studies, such as Dill et al. ⁽¹⁷⁾ and Tendera et al., ⁽³⁵⁾ report positive mean differences of 5.20 and 6.60, respectively, indicating that stem cell therapy may improve LVEF compared to the control. Conversely, studies like Guo ⁽¹⁹⁾ et al. and Plewka et al. ⁽³⁰⁾ show negative mean differences of -5.05 and -4.00, suggesting that in these specific populations, stem cell therapy may not be beneficial. Notably, some studies have confidence intervals crossing zero, indicating that the observed differences are not statistically significant.

Overall Effect

The random effects model shows a pooled mean difference of **0.87** (95% CI: -1.34 to 3.08), indicating a non-significant overall effect of stem cell therapy on LVEF. In contrast, the common effect model shows a mean difference of **-0.41** (95% CI: -0.89 to 0.07), also suggesting a non-significant result with the confidence interval crossing zero.

Heterogeneity

There is substantial heterogeneity among the studies, with an I² value of 91%, indicating high variability between the results of the studies. This heterogeneity suggests differences in study designs, patient populations, or intervention protocols, which might have influenced the outcomes.

Conclusion

Overall, the forest plot in Figure 3 indicates that stem cell therapy does not have a statistically significant impact on LVEF as assessed by echocardiography.

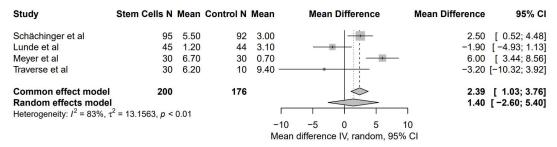


Figure 4. Forest Plot of Mean Difference in Left Ventricular Ejection Fraction (LVEF) Between Stem Cell Therapy and Control Groups Assessed by Cardiac MRI

The forest plot in **Figure 4** illustrates the mean differences in left ventricular ejection fraction (LVEF) between stem cell therapy and control groups, assessed by cardiac MRI, across four clinical trials. Each study reports the mean difference with 95% confidence intervals (CI), demonstrating the variation in LVEF improvement between the two groups.

Study-Specific Results

Schächinger et al. ⁽³³⁾ and Meyer et al. ⁽²⁸⁾ show positive effects of stem cell therapy, with mean differences of **2.50** and **6.00**, respectively, suggesting a notable improvement in LVEF compared to control groups. Conversely, studies like Lunde et al. ⁽²⁵⁾ and Traverse et al. ⁽³⁶⁾ show negative mean differences of **-1.90** and **-3.20**, indicating a lack of benefit or even potential harm in these specific cases. Importantly, some of these studies show confidence intervals that cross zero, indicating that the results are not statistically significant.

Overall Effect

The random effects model yields a pooled mean difference of **1.40** (95% CI: -2.60 to 5.40), indicating that the overall effect of stem cell therapy on LVEF is not statistically significant, as the confidence interval crosses zero. However, the common effect model shows a more pronounced pooled mean difference of **2.39** (95% CI: 1.03 to 3.76), with the confidence interval not crossing zero, indicating a significant improvement in LVEF when assuming no heterogeneity.

Heterogeneity

The heterogeneity among the studies is substantial, with an I² value of 83%, suggesting

considerable variability between the studies. This heterogeneity could be due to differences in patient populations, stem cell therapy protocols, or MRI techniques used in the studies.

Conclusion

The forest plot in Figure 4 suggests a potential improvement in LVEF with stem cell therapy, as indicated by the significant result in the common effect model. However, the high heterogeneity and the non-significant result from the random effects model indicate that caution should be exercised when interpreting these findings

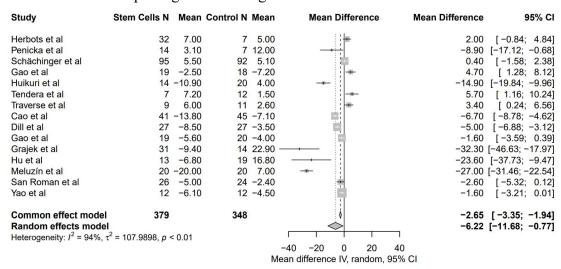


Figure 5. Forest Plot of Mean Difference in Left Ventricular End-Systolic Volume (LVESV) Between Stem Cell Therapy and Control Groups

The forest plot in **Figure 5** shows the mean differences in left ventricular end-systolic volume (LVESV) between stem cell therapy and control groups across 14 clinical trials. Each study reports its respective mean difference and 95% confidence intervals (CI), highlighting the variation in LVESV reduction between the two groups.

Study-Specific Results

Several studies, such as Huikuri et al. ⁽²³⁾ and Grajek et al. ⁽¹⁸⁾ show large negative mean differences of **-14.90** and **-33.50**, respectively, indicating a substantial reduction in LVESV with stem cell therapy. Similarly, other studies, including Cao et al. ⁽¹⁶⁾ and Dill et al. ⁽¹⁷⁾ also show notable LVESV reductions with negative mean differences. On the contrary, studies like Penicka et al. ⁽²⁹⁾ and Tendera et al. ⁽³⁵⁾ report positive or small mean differences, suggesting little to no improvement in LVESV with stem cell therapy. Some studies, such as Herbots et al. ⁽²⁰⁾ show confidence intervals crossing zero, indicating non-significant results.

Overall Effect

The random effects model yields a pooled mean difference of -6.22 (95% CI: -11.68 to -0.77), indicating a significant reduction in LVESV with stem cell therapy. The common effect model also shows a significant mean difference of -2.65 (95% CI: -3.35 to -1.94), further suggesting that stem cell therapy leads to a meaningful reduction in LVESV across the studies.

Heterogeneity

The I² value of 94% indicates very high heterogeneity among the studies, meaning there is significant variability in the results. This heterogeneity may stem from differences in patient populations, stem cell protocols, or the methodology used to assess LVESV.

Conclusion

Overall, the forest plot in Figure 5 suggests that stem cell therapy has a significant impact in reducing LVESV, as reflected by both the random effects and common effect models.

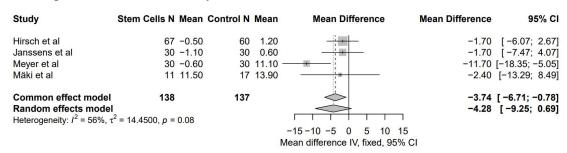


Figure 6. Forest Plot of Mean Difference in Left Ventricular End-Systolic Volume Index (LVESVI) Between Stem Cell Therapy and Control Groups

The forest plot in **Figure 6** depicts the mean differences in left ventricular end-systolic volume index (LVESVI) between stem cell therapy and control groups across four clinical trials. Each study provides its respective mean difference along with 95% confidence intervals (CI), illustrating the variation in LVESVI between the two groups.

Study-Specific Results

Most studies, such as Hirsch et al.⁽²¹⁾ and Janssens et al., ⁽²⁴⁾ show negative mean differences of **-1.70**, indicating a reduction in LVESVI in the stem cell therapy groups compared to the control groups, although the confidence intervals for both studies cross zero, suggesting non-significant results. Meyer et al. ⁽²⁸⁾ presents a notably larger negative mean difference of **-11.70** (95% CI: -18.35 to -5.05), suggesting a significant reduction in LVESVI with stem cell therapy. On the other hand, Mäki et al. ⁽²⁶⁾ reports a positive mean difference of **-2.40**, but with wide confidence intervals, indicating uncertainty in the results.

Overall Effect

The random effects model provides a pooled mean difference of **-4.28** (95% CI: -9.25 to 0.69), indicating a non-significant reduction in LVESVI with stem cell therapy, as the confidence interval crosses zero. The common effect model shows a pooled mean difference of **-3.74** (95% CI: -6.71 to -0.78), which is statistically significant, as the confidence interval does not cross zero.

Heterogeneity

The I² value of **56%** suggests moderate heterogeneity among the studies, meaning there is some variability between study results, which may be due to differences in patient characteristics, stem cell therapy protocols, or assessment methods.

Conclusion

Overall, the forest plot in Figure 6 suggests a trend towards a reduction in LVESVI with stem cell therapy, as indicated by the significant result in the common effect model.

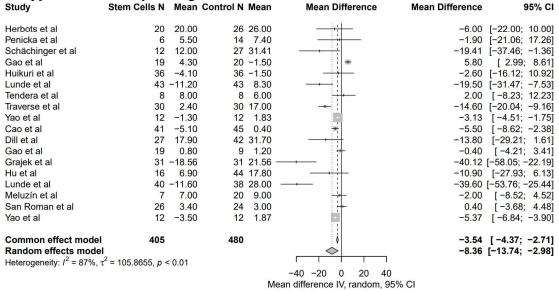


Figure 7. Forest Plot of Mean Difference in Left Ventricular End-Diastolic Volume (LVEDV) Between Stem Cell Therapy and Control Groups

The forest plot in **Figure 7** illustrates the mean differences in left ventricular end-diastolic volume (LVEDV) between stem cell therapy and control groups across 16 clinical trials. Each study presents its mean difference with 95% confidence intervals (CI), highlighting the variability in LVEDV outcomes between the two groups.

Study-Specific Results

Several studies, such as Grajek et al. ⁽¹⁸⁾ and Cao et al. ⁽¹⁶⁾ demonstrate significant reductions in LVEDV with mean differences of **-18.56** and **-14.20**, respectively, indicating a strong positive impact of stem cell therapy in reducing LVEDV. Conversely, studies like Penicka et al. ⁽²⁹⁾ and Tendera et al. ⁽³⁵⁾ show smaller or non-significant reductions in LVEDV, with mean differences of **-1.90** and **-3.20**, respectively, and confidence intervals crossing zero. Some studies, like Gao et al. ⁽¹⁰⁾ report positive differences, suggesting that stem cell therapy did not always lead to reduced LVEDV.

Overall Effect

The random effects model provides a pooled mean difference of **-8.36** (95% CI: -13.74 to -2.98), indicating a significant reduction in LVEDV with stem cell therapy compared to the control groups. The common effect model similarly shows a significant reduction, with a mean difference of **-3.54** (95% CI: -4.37 to -2.71).

Heterogeneity

The I² value of **87%** indicates high heterogeneity among the studies, suggesting substantial variability in outcomes. This could be due to differences in patient characteristics, stem cell types, or study protocols, which may affect the efficacy of stem cell therapy in reducing LVEDV.

Conclusion

The forest plot in Figure 7 suggests that stem cell therapy leads to a significant reduction in LVEDV, as shown by both the random effects and common effect models. However, the high heterogeneity indicates that the results should be interpreted cautiously, as the variability in study outcomes may be influenced by differences in methodology or patient populations.

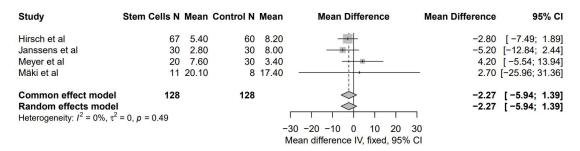


Figure 8. Forest Plot of Mean Difference in Left Ventricular End-Diastolic Volume Index (LVEDVI) Between Stem Cell Therapy and Control Groups

The forest plot in **Figure 8** illustrates the mean differences in left ventricular end-diastolic volume index (LVEDVI) between stem cell therapy and control groups across four clinical trials. Each study presents its mean difference with 95% confidence intervals (CI), highlighting the variation in LVEDVI outcomes between the two groups.

Study-Specific Results

The studies by Hirsch et al. ⁽²¹⁾ and Janssens et al. ⁽²⁴⁾ show negative mean differences of **-2.80** and **-5.20**, respectively, suggesting a reduction in LVEDVI in the stem cell therapy groups compared to the control groups, although the confidence intervals for both studies cross zero, indicating non-significant results. Meyer et al. ⁽²⁸⁾ reports a positive mean difference of **4.20**, suggesting an increase in LVEDVI with stem cell therapy in that specific trial, while Mäki et al. ⁽²⁶⁾ also shows a positive mean difference of **2.70**, though with a wide confidence interval.

Overall Effect

Both the common and random effects models provide a pooled mean difference of **-2.27** (95% CI: -5.94 to 1.39), indicating a small, non-significant reduction in LVEDVI with stem cell therapy, as the confidence intervals cross zero in both models.

Heterogeneity

The I² value of **0%** suggests no significant heterogeneity among the studies, meaning that the results are consistent across the included trials.

Conclusion

The forest plot in Figure 8 indicates a trend toward a small reduction in LVEDVI with stem cell therapy. However, the pooled results are not statistically significant.

Adverse events

Study	Experime Events			ntrol Total	Odds Ratio	OR	95%-CI (Weight common) (Weight random)
Hu X et al San Roman et al Schächinger et al	0 0 2	11 30 101	0 1 6	14 31 - 103			[0.01; 8.51] [0.06; 1.66]	0.0% 20.0% 80.0%	0.0% 20.1% 79.9%
Common effect model Random effects mode Heterogeneity: $I^2 = 0\%$, τ^2	ľ	142 99		148	0.1 0.51 2 10 dds Ratio M-H, random, 95%	0.33	[0.08; 1.40] [0.08; 1.40]	100.0%	100.0%

Figure 9. Forest Plot of Death During Follow-Up Between Stem Cell Therapy and Control Groups

The forest plot in **Figure 9** presents the odds ratios (OR) for death during follow-up in patients treated with stem cell therapy compared to control groups across three clinical trials. The odds ratios are accompanied by 95% confidence intervals (CI), illustrating the relative risk of death between the two groups.

Study-Specific Results

Hu et al. ⁽²²⁾ and San Roman et al. ⁽³²⁾ both show an odds ratio of **0.33**, suggesting a potential reduction in the risk of death with stem cell therapy. However, the confidence intervals are wide and cross-one, indicating that the results are not statistically significant. Schächinger et al. ⁽³³⁾ shows a similar trend with an odds ratio of **0.33** (95% CI: 0.06 to 1.66), though the wide CI reflects uncertainty in the results due to the small number of events.

Overall Effect

The pooled odds ratio in both the common and random effects models is **0.33** (95% CI: 0.08 to 1.40), suggesting a possible reduction in the risk of death with stem cell therapy. However, the confidence interval crosses one, indicating that the overall effect is not statistically significant.

Heterogeneity

The I² value of **0%** indicates no heterogeneity among the included studies, meaning that the results are consistent across the trials.

Conclusion

The forest plot in Figure 9 suggests a potential reduction in mortality during follow-up in the stem cell therapy group. However, due to the wide confidence intervals and lack of statistical significance, these findings should be interpreted cautiously.

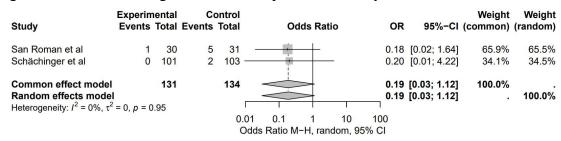


Figure 10. Forest Plot of Reinfarction Between Stem Cell Therapy and Control Groups

The forest plot in **Figure 10** shows the odds ratios (OR) for the occurrence of reinfarction in patients receiving stem cell therapy compared to control groups across two clinical trials. The odds

ratios for each study are accompanied by 95% confidence intervals (CI), indicating the likelihood of reinfarction between the two groups.

Study-Specific Results

In San Roman et al., ⁽³²⁾ the odds ratio is **0.18** (95% CI: 0.02 to 1.64), suggesting a potential reduction in the risk of reinfarction with stem cell therapy, though the confidence interval crosses one, indicating that the result is not statistically significant. Schächinger et al. ⁽³³⁾ show a similar trend with an odds ratio of **0.20** (95% CI: 0.01 to 4.22), but the wide confidence interval reflects uncertainty due to the small number of events.

Overall Effect

Both the common and random effects models provide a pooled odds ratio of **0.19** (95% CI: 0.03 to 1.12), indicating a potential reduction in the risk of reinfarction with stem cell therapy compared to control groups. However, the confidence interval crosses one, indicating that the overall effect is not statistically significant.

Heterogeneity

The I² value of **0%** suggests no heterogeneity between the studies, meaning the results are consistent across the trials.

Conclusion

The forest plot in Figure 10 suggests a potential reduction in the risk of reinfarction in patients treated with stem cell therapy. However, the non-significant confidence intervals indicate that these results should be interpreted with caution.

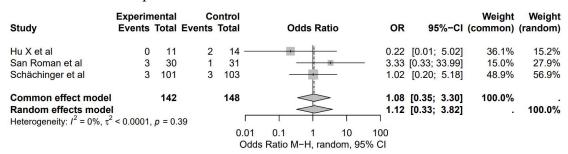


Figure 11. Forest Plot for Rehospitalization Related to Heart Failure (HF) Between Stem Cell Therapy and Control Groups in follow up period

The forest plot in **Figure 11** presents the odds ratios (OR) for rehospitalization related to heart failure (HF) in patients receiving stem cell therapy compared to control groups across three clinical trials. The odds ratios are accompanied by 95% confidence intervals (CI), showing the relative likelihood of HF-related rehospitalization between the two groups.

Study-Specific Results

Hu et al. ⁽²²⁾ shows an odds ratio of **0.22** (95% CI: 0.01 to 5.02), suggesting a potential reduction in HF-related rehospitalization in the stem cell therapy group, though the wide confidence interval indicates that the result is not statistically significant. San Roman et al. ⁽³²⁾ shows an odds ratio of **3.33** (95% CI: 0.33 to 33.99), indicating a trend toward increased rehospitalization risk, although this result is also not statistically significant. Schächinger et al. ⁽³³⁾ shows a more neutral result with an odds ratio of **1.02** (95% CI: 0.20 to 5.18).

Overall Effect

The pooled odds ratio from the random effects model is **1.12** (95% CI: 0.33 to 3.82), while the common effect model shows **1.08** (95% CI: 0.35 to 3.30). Both models show non-significant results, with confidence intervals crossing one, suggesting no clear effect of stem cell therapy on reducing or increasing the likelihood of HF-related rehospitalization.

Heterogeneity

The I² value of **0%** indicates no heterogeneity among the included studies, suggesting that the results are consistent across the trials.

Conclusion

The forest plot in Figure 11 suggests no statistically significant difference in HF-related rehospitalization between stem cell therapy and control groups.

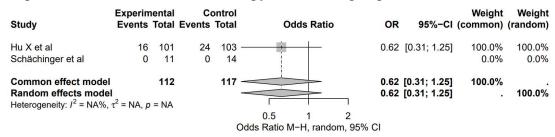


Figure 12. Forest Plot Target Vessel Revascularization (TVR) Between Stem Cell Therapy and Control Groups during follow up period

The forest plot in **Figure 12** shows the odds ratios (OR) for target vessel revascularization (TVR) in patients receiving stem cell therapy compared to control groups across two clinical trials. The odds ratios are accompanied by 95% confidence intervals (CI), indicating the likelihood of needing TVR between the two groups.

Study-Specific Results

Hu et al. ⁽²²⁾ report an odds ratio of **0.62** (95% CI: 0.31 to 1.25), suggesting a potential reduction in the need for TVR in the stem cell therapy group compared to the control group, although the confidence interval crosses one, indicating that the result is not statistically significant. Schächinger et al. ⁽³³⁾ did not observe any events, making it difficult to assess the effect of stem cell therapy in that trial.

Overall Effect

Both the common and random effects models yield a pooled odds ratio of **0.62** (95% CI: 0.31 to 1.25), indicating a trend toward reduced risk of TVR with stem cell therapy. However, the confidence interval crosses one, suggesting that the overall effect is not statistically significant.

Heterogeneity

There is no measurable heterogeneity ($I^2 = NA$), suggesting that the results are consistent across the trials included in this analysis.

Conclusion

The forest plot in Figure 12 suggests a potential reduction in the need for target vessel revascularization with stem cell therapy.

Study	Experim Events		Co Events	ontrol Total		Odd	ds Ra	atio		OR	95%-CI	Weight (common)	Weight (random)
San Roman et al Schächinger et al	6 5	30 101	6	31 103	_						[0.29; 3.68] [0.40; 7.46]	62.6% 37.4%	57.2% 42.8%
Common effect model Random effects model Heterogeneity: $I^2 = 0\%$, τ^2	I	131 .60		134							[0.50; 3.36] [0.50; 3.37]	100.0%	100.0%
				C	0.2 odds Ra	0.5 atio M-	1 ·H, ra	2 ndom,	5 95% (CI			

Figure 13. Forest Plot of Odds Ratio for Arrhythmia Between Stem Cell Therapy and Control Groups during follow-up period

The forest plot in **Figure 13** illustrates the odds ratios (OR) for the occurrence of arrhythmia in patients receiving stem cell therapy compared to control groups across two clinical trials. The odds ratios are accompanied by 95% confidence intervals (CI), showing the likelihood of arrhythmia events between the two groups.

Study-Specific Results

San Roman et al. ⁽³²⁾ presents an odds ratio of **1.04** (95% CI: 0.29 to 3.68), indicating no significant difference in the risk of arrhythmia between the stem cell therapy and control groups. Schächinger et al. ⁽³³⁾ shows a slightly higher odds ratio of **1.74** (95% CI: 0.40 to 7.46), suggesting a possible increased risk of arrhythmia, though this result is not statistically significant due to the wide confidence interval.

Overall Effect

The pooled odds ratio from both the common and random effects models is **1.30** (95% CI: 0.50 to 3.37), indicating no significant difference in the overall risk of arrhythmia between the stem cell therapy and control groups. The confidence interval crosses one, suggesting that the effect is not statistically significant.

Heterogeneity

The I² value of **0%** indicates no heterogeneity among the included studies, meaning the results are consistent across the trials.

Conclusion

The forest plot in Figure 13 suggests no statistically significant difference in the risk of arrhythmia between stem cell therapy and control groups.

Discussion

The analysis of the impact of stem cell therapy on left ventricular ejection fraction (LVEF) highlights mixed results across different imaging modalities. For LVEF measured by SPECT, the random effects model indicated a small, non-significant improvement (mean difference of 0.86), while the common effect model suggested a statistically significant improvement (mean difference of 1.34) as reported by Yao et al. (37) and Meluzín et al., (27).

Also, San Roman et al ⁽³²⁾ in their RCT divided their study population into four groups which include one group of 30 patients receiving bone marrow mononuclear cells, 30 patients assigned to granulocyte colony-stimulating factor (G-CSF), 29 patients receiving G-CSF + cells, and a placebo group of 31 patients receiving standard therapy. Patients treated with any of these stem

cell approaches experienced similar changes in LVEF and LVESV when compared to the control group. One year later, cardiac magnetic resonance imaging (MRI) did not show much difference in these four groups.

However, Silva et al. ⁽³⁴⁾ and Mäki et al. ⁽²⁶⁾ showed that stem cell therapy has no superior effect on LVEF compared to the control group.

In contrast, echocardiographic assessments yielded non-significant results, with both models indicating no substantial benefit from stem cell therapy on LVEF. Similar findings were reported by Guo ⁽¹⁹⁾ et al. and Plewka et al. ⁽³⁰⁾ who showed that stem cell therapy may not be beneficial regarding LVEF improvement. However, Dill et al. ⁽¹⁷⁾ and Tendera et al., ⁽³⁵⁾ reported that stem cell therapy could significantly improve LVEF compared to the control

The present meta-analysis indicated that the Cardiac MRI results showed potential improvement in LVEF with stem cell therapy. In agreement with our results, Schächinger et al. ⁽³³⁾ and Meyer et al. ⁽²⁸⁾ show positive effects of stem cell therapy, suggesting a notable improvement in LVEF compared to control groups. However, Lunde et al. ⁽²⁵⁾ and Traverse et al. ⁽³⁶⁾ indicated a lack of benefit of stem cell therapy regarding LVEF.

The current results demonstrated that stem cell therapy showed significant reductions in LVESV and LVESVI compared to control group. In line with our results, Huikuri et al. ⁽²³⁾ and Grajek et al. ⁽¹⁸⁾, indicated a substantial reduction in LVESV with stem cell therapy. Cao et al. ⁽¹⁶⁾ and Dill et al. ⁽¹⁷⁾ also show notable LVESV reductions with negative mean differences. Penicka et al. ⁽²⁹⁾ and Tendera et al. ⁽³⁵⁾ reported no improvement in LVESV with stem cell therapy. However, Herbots et al. ⁽²⁰⁾ showed non-significant results between stem cell and control group regarding LVESV. Regarding LVESVI, Hirsch et al. ⁽²¹⁾, Janssens et al., ⁽²⁴⁾, and Meyer et al. ⁽²⁸⁾ showed a reduction in LVESVI in the stem cell therapy groups compared to the control groups.

According to the present analysis, the mean LVEDVwas significantly reduced with stem cell therapy compared tp the control group however, the variability in study outcomes may be influenced by differences in methodology or patient populations.

In agreement with our results, Grajek et al. ⁽¹⁸⁾ and Cao et al. ⁽¹⁶⁾ demonstrate significant reductions in LVEDV in the stem cell therapy compared to the control group.

Also, Hu et al. ⁽²²⁾ in their RCT included 36 patients out of which 22 patients in the treatment arm either received normoxia-bone marrow cells (N-BMCs) or hypoxia-preconditioned bone marrow cells (HP-BMCs) and 14 patients received standard therapy. There was an improvement in changes of left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) in HP-BMC group than N-BMC or control group (P < 0.05),

However, Penicka et al. ⁽²⁹⁾ and Tendera et al. ⁽³⁵⁾ show smaller or non-significant reductions in LVEDVbetween stem cell and control group. The different sample size may affect the results.

Regarding LVEDVI, the current meta-analysis showed that small reduction in LVEDVI with stem cell therapy compared to the control group. Supporting our findings, Hirsch et al. ⁽²¹⁾ and Janssens et al. ⁽²⁴⁾ showed a significant reduction in LVEDVI in the stem cell therapy groups compared to the control groups. On the other hand, Meyer et al. ⁽²⁸⁾ showed that there was a significant increase in LVEDVI with stem cell therapy.

The current meta-analysis showed that stem cell therapy may offer a potential reduction in mortality risk after AMI compared to control groups, this came in line with studies by Hu et al. (22), San Roman et al. (32) and Schächinger et al. (33) show an odds ratio of **0.33**, suggesting a potential reduction in the risk of death with stem cell therapy.

In terms of reinfarction, the current results showed a potential reduction in the risk of reinfarction in patients treated with stem cell therapy with the pooled odds ratio at 0.19. similar findings were observed by San Roman et al., ⁽³²⁾ and Schächinger et al. ⁽³³⁾ who report odds ratios 0.18 and 0.2 respectively suggesting reduced reinfarction risk with stem cell therapy.

According to the present meta-analysis, rehospitalization due to heart failure, revealed a pooled odds ratio of 1.12, indicating no clear effect of stem cell therapy. While Hu et al. ⁽²²⁾ suggested a potential reduction in HF-related rehospitalization in the stem cell therapy group. On the other hand, San Roman et al. ⁽³²⁾ showed increased rehospitalization risk in stem cell group compared to controls with no significant difference between them.

In addition, the present syudy indicate potential reductions in target vessel revascularization (OR 0.62) and arrhythmia risk (OR 1.30), but these findings also lack statistical significance due to overlapping confidence intervals. Hu et al. (22) suggested a potential reduction in TVR need in the stem cell therapy group compared to controls. Regarding arrhythmia, San Roman et al. (32) showed no significant difference between stem cell group and control group in arrhythmia that was comparable to our findings however, Schächinger et al. (33) showed insignificant increased risk of arrhythmia with stem cell therapy.

Overall, while trends are suggesting potential benefits of stem cell therapy, many outcomes remain inconclusive, necessitating further research.

Additional comprehensive, future investigations would be advantageous in determining the effectiveness of stem cell therapy after AMI compared to other treatment modalities.

There exist some limitations in the present study including variety among the studies in some of the number of stem cell injected, type of stem cell differentiated or non-differentiated cells also the time of injection and route of administration differed among the studies. Small sample sizes in some of the studies and with different study designs. Another limitation is presented in the statistically significant heterogeneity in some of the outcomes. In addition, the study did not give insights regarding the conditions of stem cell culturing and transplantation.

We recommend further longitudinal studies and RCTs with adequate follow-up period and a larger sample size to adequately investigate the difference between the two arms and produce accurate results.

Conclusion

The analysis suggests that stem cell therapy may offer modest improvements in left ventricular ejection fraction (LVEF) and significant reductions in left ventricular end-systolic volume (LVESV). However, results vary across imaging modalities, with many outcomes lacking statistical significance. Trends indicate potential benefits for mortality and reinfarction, but high heterogeneity among studies complicates interpretations. Overall, while there are promising findings, caution is needed due to variability and inconclusive results in several areas.

Acknowledgments

Nill.

Financial Assistance

Non.

Conflicts of Interest

Non.

Ethical approval

All ethical procedures were followed and our study was validated by a provincial ethics commission.

REFERENCES

- 1. **Lee H, Cho H-J, Han Y, et al.** Mid- to long-term efficacy and safety of stem cell therapy for acute myocardial infarction: a systematic review and meta-analysis. Stem Cell Research & Therapy. 2024;15(1):290. https://doi.org/10.1186/s13287-024-03891-1
- 2. **Botleroo RA, Bhandari R, Ahmed R, et al.** Stem Cell Therapy for the Treatment of Myocardial Infarction: How Far Are We Now? Cureus. 2021;13(8):e17022. https://doi.org/10.7759/cureus.17022
- 3. **Sachdeva P, Kaur K, Fatima S, et al.** Advancements in Myocardial Infarction Management: Exploring Novel Approaches and Strategies. Cureus. 2023;15(9):e45578. https://doi.org/10.7759/cureus.45578
- 4. **Kolandaiveloo L, Seghayat MS, Amini F.** Efficacy and safety of autologous bone marrow cell therapy in treatment of acute myocardial infarction. Regen Res. 2016;4:15-24.
- 5. **Salari N, Morddarvanjoghi F, Abdolmaleki A, et al.** The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2023;23(1):206. https://doi.org/10.1186/s12872-023-03231-w
- 6. **Gerbin KA, Murry CE.** The winding road to regenerating the human heart. Cardiovasc Pathol. 2015;24(3):133-40. https://doi.org/10.1016/j.carpath.2015.02.004
- 7. **Shah VK, Shalia KK.** Stem cell therapy for acute myocardial infarction-long term 24 months follow-up. J Clin Trials Cardiol. 2014;1:1-5.
- 8. **Carvalho E, Verma P, Hourigan K, et al.** Myocardial infarction: stem cell transplantation for cardiac regeneration. Regen Med. 2015;10(8):1025-43. https://doi.org/10.2217/rme.15.63
- 9. **Ye J, Yeghiazarians Y.** Cardiac stem cell therapy: review of the native cardiac progenitor cells and future direction. J Cardiovasc Pharmacol. 2014;63(2):85-94. https://doi.org/10.1097/FJC.0b013e318299ebc0
- 10. **Gao LR, Chen Y, Zhang NK, et al.** Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162. https://doi.org/10.1186/s12916-015-0399-z
- 11. **Lee SH, Hong JH, Cho KH, et al.** Discrepancy between short-term and long-term effects of bone marrow-derived cell therapy in acute myocardial infarction: a systematic review and meta-analysis. Stem Cell Res Ther. 2016;7(1):153. https://doi.org/10.1186/s13287-016-0415-z

- 12. **Bolli R.** Cell therapy for acute myocardial infarction: Requiescat in Pace. Eur Heart J. 2020;41(38):3711-4. https://doi.org/10.1093/eurheartj/ehaa802
- 13. **Bozdag-Turan I, Turan RG, Ludovicy S, et al.** Intra coronary freshly isolated bone marrow cells transplantation improve cardiac function in patients with ischemic heart disease. BMC Res Notes. 2012;5:195. https://doi.org/10.1186/1756-0500-5-195
- 14. **Duan F, Qi Z, Liu S, et al.** Effectiveness of bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: an echocardiographic study of left ventricular remodeling. Med Ultrason. 2015;17(2):160-6. https://doi.org/10.11152/mu.2013.2066.172.effbm
- 15. **Tufanaru C, Munn Z, Stephenson M, et al.** Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. JBI Evidence Implementation. 2015;13(3):196-207.
- 16. Cao F, Sun D, Li C, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. European heart journal. 2009;30(16):1986-94.
- 17. **Dill T, Schächinger V, Rolf A, et al.** Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. American Heart Journal. 2009;157(3):541-7.
- 18. **Grajek S, Popiel M, Gil L, et al.** Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation. Eur Heart J. 2010;31(6):691-702. https://doi.org/10.1093/eurheartj/ehp536
- 19. SZ G. Assessing therapeutic efficacy of autologous mononuclear bone marrow cells transplantation with RT-MCE in AMI patients. China: The University of Fudan; 2006.
- 20. **Herbots L, D'Hooge J, Eroglu E, et al.** Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur Heart J. 2009;30(6):662-70. https://doi.org/10.1093/eurheartj/ehn532
- 21. **Hirsch A, Nijveldt R, van der Vleuten PA, et al.** Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J. 2011;32(14):1736-47. https://doi.org/10.1093/eurheartj/ehq449
- 22. **Hu X, Huang X, Yang Q, et al.** Safety and efficacy of intracoronary hypoxia-preconditioned bone marrow mononuclear cell administration for acute myocardial infarction

patients: The CHINA-AMI randomized controlled trial. Int J Cardiol. 2015;184:446-51. https://doi.org/10.1016/j.ijcard.2015.02.084

- 23. **Huikuri HV, Kervinen K, Niemelä M, et al.** Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29(22):2723-32. https://doi.org/10.1093/eurheartj/ehn436
- 24. **Janssens S, Dubois C, Bogaert J, et al.** Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367(9505):113-21. https://doi.org/10.1016/s0140-6736(05)67861-0
- 25. **Lunde K, Solheim S, Aakhus S, et al.** Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199-209. https://doi.org/10.1056/NEJMoa055706
- 26. **Mäki MT, Koskenvuo JW, Ukkonen H, et al.** Cardiac Function, Perfusion, Metabolism, and Innervation following Autologous Stem Cell Therapy for Acute ST-Elevation Myocardial Infarction. A FINCELL-INSIGHT Sub-Study with PET and MRI. Front Physiol. 2012;3:6. https://doi.org/10.3389/fphys.2012.00006
- 27. **Meluzín J, Janousek S, Mayer J, et al.** Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol. 2008;128(2):185-92. https://doi.org/10.1016/j.ijcard.2007.04.098
- 28. **Meyer GP, Wollert KC, Lotz J, et al.** Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J. 2009;30(24):2978-84. https://doi.org/10.1093/eurheartj/ehp374
- 29. **Penicka M, Horak J, Kobylka P, et al.** Intracoronary injection of autologous bone marrow-derived mononuclear cells in patients with large anterior acute myocardial infarction: a prematurely terminated randomized study. J Am Coll Cardiol. 2007;49(24):2373-4. https://doi.org/10.1016/j.jacc.2007.04.009
- 30. **Plewka M, Krzemińska-Pakuła M, Lipiec P, et al.** Effect of intracoronary injection of mononuclear bone marrow stem cells on left ventricular function in patients with acute myocardial infarction. Am J Cardiol. 2009;104(10):1336-42. https://doi.org/10.1016/j.amjcard.2009.06.057
- 31. **Roncalli J, Mouquet F, Piot C, et al.** Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J. 2011;32(14):1748-57. https://doi.org/10.1093/eurheartj/ehq455
- 32. **San Roman JA, Sánchez PL, Villa A, et al.** Comparison of Different Bone Marrow-Derived Stem Cell Approaches in Reperfused STEMI. A Multicenter, Prospective, Randomized, Open-Labeled TECAM Trial. J Am Coll Cardiol. 2015;65(22):2372-82. https://doi.org/10.1016/j.jacc.2015.03.563

- 33. **Schächinger V, Erbs S, Elsässer A, et al.** Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210-21. https://doi.org/10.1056/NEJMoa060186
- 34. **Silva SA, Sousa AL, Haddad AF, et al.** Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: comparison of two delivery techniques. Cell Transplant. 2009;18(3):343-52. https://doi.org/10.3727/096368909788534951
- 35. **Tendera M, Wojakowski W, Ruzyłło W, et al.** Intracoronary infusion of bone marrowderived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30(11):1313-21. https://doi.org/10.1093/eurheartj/ehp073
- 36. **Traverse JH, McKenna DH, Harvey K, et al.** Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 2010;160(3):428-34. https://doi.org/10.1016/j.ahj.2010.06.009
- 37. **Yao K, Huang R, Sun A, et al.** Repeated autologous bone marrow mononuclear cell therapy in patients with large myocardial infarction. Eur J Heart Fail. 2009;11(7):691-8. https://doi.org/10.1093/eurjhf/hfp062